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A B S T R A C T  

 
In the present work, the numerical solutions have been carried out for viscothermoelastic homogeneous isotropic 

nanobeam. A generalized model of one relaxation time has been used, under simply supported conditions for fixed 

aspect ratios. Laplace transform has been applied for the governing equations. The inverse of the Laplace transform 
has been calculated by applying the Tzou method. The numerical results have been validated for a viscothermoelastic 

rectangular nanobeam of gold as a particular case when it is subjected to ramp-type and harmonic-type heating. The 

numerical results have been illustrated in figures to stand on the impact of the viscothermoelastic parameters, the 
ramping heat parameter, and the harmonic heat parameter on all the studied functions. The viscothermoelastic 

parameters, the ramping heat parameter, and the harmonic heat parameter have significant effects on the temperature 

increment, the lateral vibration, the deformation, the stress, and the stress-strain energy distributions. 

 
 

1. Introduction 

Tzou constructed and studied the heat conduction by using different 

mathematical models such as dual-phase lag (DPL) [1,2]. The 

temperature gradient and heat flux have been considered through this 

model. Many authors have used this model to solve heat transfer 

problems [3-8]. The coupled theory of thermoelasticity is the kind of 

heat conduction based on the equation of motion, and the equation of 

energy conservation, depending on Fourier’s law of heat conduction 

[9-12]. Lord and Shulman modified the classical Fourier’s law of heat 

conduction by inserting the lag time (relaxation time) for an isotropic 

case [13]. Within this model, the heat conduction law has been 

modified to include the heat flux as an unknown function with its time 

derivative, which is called Cattaneo’s law (non-Fourier) of heat 

conduction. The heat equation is a hyperbolic type in this theory, 

which eliminates the defect of infinite speed propagation of the 

thermal wave [14]. Many mathematical models and applications based 

on micro and nano-electromechanical beam resonators have been 

solved and discussed in [15-18]. 

The vibration of nanobeam is the most important and essential of 

the micro/nanobeam resonators. Alghamdi [9] studied the thermal 

damping of vibration of beam resonator with voids  by dual-phase-lag 

generalized thermoelasticity theory. Youssef and Elsibai solved a 

problem of gold nanobeam by using state-space approach [19]. 

Youssef solved a problem of gold nanobeam with variable thermal 

conductivity by using the state-space approach [20]. Sharma and 

Grover discussed the thermal transfer and vibrations of an isotropic 

homogenous and thermoelastic micro/nanoscale thin beam resonators 

with voids [21]. Sun and Saka discussed the thermal damping 

vibration for microplate out-of-plane circular plate resonators [22]. 

They added a new factor based on Poisson’s ratio in the formula of 

thermoelastic damping which is different from the  Lifshitz and 

Roukes formula [23].  Some authors discussed the vibration and the 

heat transfer process of thermoelastic nanobeams  [24-28].  Eman and 

Youssef studied the vibration of gold nanobeam due to thermal shock 

[25]. Kiawa studied the effects of internal and external damping on 

transverse vibrations of a nanobeam due to a moving heat source by 

using the Green function properties [27]. Boley discussed the 

vibrations of a simply supported rectangular nanobeam subjected to a 

thermal shock distributed through its span [26]. A discussion of the 

thermally induced vibration of nano-beams structures has been done 

by Manolis and Beskos; they used a numerical method of analysis to 

the thermal of the elastic dynamic response of beam structure to 

thermal loading [28]. Al-Huniti et al. introduced an investigation of 

the thermally induced displacements and stresses of a heated rod by a 

high-power moving laser beam, and he studied the dynamical 

beheviour of the heated rod using the Laplace transforms technique 

[24]. 

Recently, the study of the viscoelastic materials and 

its relaxation times effects has become essential and vital in 

thermomechanics. The viscothermoelasticity theory and its variational 

principles in thermodynamics has been studied by Biot [29,30]. 

Drozdov [31] derived the constitutive model for the 

viscothermoelasticity behavior of polymer materials at finite strain. At 

the same time, Ezzat and El-Karmany [32] applied a new model of 

viscothermoelasticity for isotropic media to study the lag times impact 

of volume properties of viscothermoelasticity materials. Carcione et 

al. applied a new algorithm for wave simulations in an elastic medium 

by using the Kelvin–Voigt mechanical model [33]. Grover studied 

transverse vibrations in micro-scale viscothermoelastic beam 

resonators [34-36]. Sharma and Grover discussed the closed-form 

definition for the transverse vibrations of a homogenous thermoelastic 

fine beam with voids in micro/nanoscale [21]. Grover and Seth [37] 

studied viscothermoelastic micro-beam resonators based on the dual-

phase-lag model. 

2. Basic Equations 

We assume an isotropic homogenous thermally conducting, 

Kelvin–Voigt type viscothermoelastic solid material in the Cartesian 

coordinate system. Initially, it is considered unstained and at the 

reference temperature 
0T  everywhere. The essential governing partial 

differential equations of the motion and heat conduction have been 

assumed in the context of generalized thermoelasticity.  

The displacement components ( ) ( )U x, y,z; t u, v, w=  and 

absolute temperature ( )T x, y,z; t , without body forces and heat 

sources, are given by [36]: 

(1 ) ij, j iu =   
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(2 ) ( )ij ij kk ij ij 0e 2 e T T =  +  − −  

(3 ) 
( )

2

,ii 0 0 ij ij2
KT C T T e

t t


  
= +   +  

   

(4 ) ( )ij i, j j,i

1
e u u

2
= +

 

where i, j x, y, z= ,  is the density, T  is the coefficient of linear 

thermal expansion, ,   Lamè’s parameter, K is the thermal 

conductivity, 0  is the thermal relaxation time, and  C is the specific 

heat at constant strain. 

For viscothermoelastic materials, Lamè’s parameters have been 

considered in the form:  

(5 ) 
( )0 1 0 1 T1 , 1 , 3 2

t t

    
 =  +  =  +  =  +     

      

where 1 1,   are the viscoelastic relaxation times and 0 0,   

Lamè’s parameter in the usual case. 

3. Formulation of the problem 

 A small flexural deflection of a thin viscothermoelastic nanobeam 

of length , width b , and thickness h has been considered. The x, 

y, and z-axes are defined along the longitudinal ( )0 x  , width 

( )b / 2 y b / 2−   , thickness ( )h / 2 z h / 2−   , and directions 

of the beam, respectively. 

 In a state of equilibrium, the beam is undeformed, unstressed, 

without a damping mechanism, and the temperature is 0T  everywhere 

[6]. 

 

Figure 1: The rectangular beam in the Cartesian coordinate system  

The usual Euler–Bernoulli assumption [34] has been considered, 

then, the cross-section of any plane, initially perpendicular to the x-

axis remains plane and perpendicular to the x-axis during bending. 

Therefore, the displacements are given by: 

(6 ) 

( )
( ) ( )

w x, t
u z , v 0 , w x, y, z, t w x, t

x


= − = =

  

Where ( )w x, t is the lateral deflection. 

The flexural moment of the cross-section is given by 

(7 ) 
( )2

2

w x, t
M(x, t) A 0

t


+ =

  

where TM (x, t)  is defined as the thermal moment of the beam and 

is given by: 

(8 ) 

h 2

T

h 2

M (x, t) b (x, z, t) z dz
−

= 
  

and M(x, t)  is given by: 

(9 ) ( ) ( ) ( )
2

h/2

xx T2h/2

w(x, t)
M x, t b x, t, z z d z 2 I M (x, t)

x−


= −  =  +  +


  

Where I is the moment of inertia of the cross-section about the x-

axis and is given by ( )3I bh /12= Hence, the differential equation of 

thermally induced lateral vibration of the beam may be expressed in 

the form [34]: 

(10 ) 
( )

( ) ( ) ( )4 2 2

T

4 2 2

w x, t w x, t M x, t
2 I A 0

x t x

  
 +  + + =

    

where the area of the beam cross-section is ( )A hb= and 

( ) ( )( )0x,z, t T x,z, t T = −  is the temperature increment of the 

beam. 

The non-Fourier heat conduction equation has the following form 

[34]: 

(11 ) 
( ) ( )

( )
( )

2 2 2
T 0

o2 2 2

3 2 TC
x,z, t x, z, t e x, z, t

x z t t k k


  +         

+  = +   +    
       

is the volumetric strain which is given by:( )e x,z, twhere  

(12 ) 
( )

u v w
e x,z, t

x y z

  
= + +
    

By using the forms in [6], we obtain that: 

(13 ) 
( )

( )2

2

w x, t
e x,z, t z

x


= −

  

From the relations in [5], we have the following: 

(14 ) 
( ) ( ) ( )0 0 1 0 0 22 2 1 , 3 2 3 2 1

t t

    
 +  =  +  +  +  =  +  +   

    

  

where 

( )

( )
0 1 0 1

1

0 0

2

2

  +  
 =

 +   , 

( )

( )
0 1 0 1

2

0 0

3 2

3 2

  +  
 =

 +   are called the 

aggregation of the viscoelastic relaxation times parameters. 

Because there is no heat source or heat flow across the upper and 

lower surfaces of the beam,  

h
x, , t 0

z 2

  
  = 

   . Hence, For a very 

long and skinny beam, the temperature increment varies in terms of a 

( )sin pz function along the thickness direction,  gives [38]: 

(15 ) ( ) ( ) ( )x,z, t x, t sin pz =   

where p / h=  . 

Hence, equations  [8], [10], and [15] gives: 

(16 ) 

( )
( ) ( )

( ) ( )
( )

4 2

0 0 1 4 2 2

2 h/2

0 0 T

23 2

h/2

w x, t w x, t12
2 1

t x h t

12 3 2 x, t
1 zsin pz dz 0

h t x
−

   
 +  + + + 

   

 +     
+ = 

  


  

and equation [11] gives 

(17 ) 

( ) ( )
( ) ( )

( ) ( )

2 2
2

2o2 2
0 0 T 0

2 2

C
x, t sin pz

k
p x, t sin pz

3 2 T w x, tx t t
1 z

k t x

 
 −        −  = +      +            +  

   

  

By doing the integrations, the equation [16] takes the form 

(18 ) 

( )
( ) ( )

( ) ( )

4 2

0 0 1 4 2 2

2

0 0 T

22 2

w x, t w x, t12
2 1

t x h t

24 3 2 x, t
1 0

h t x

   
 +  + + + 

   

 +     
+ = 

   

  

In the equation  [17], we multiply both sides by “z” and integrating 

concerning “z” from h / 2 to h / 2− , then we obtain 

(19 ) 
( ) ( )

( ) ( )2 22 2
0 0 0 T2

0 22 2 2

T h 3 2 w x, t
p x, t x, t 1

x t t 24k t x

   +          
−  = +   − +                

  

Where 

C

k


 =

.  

For simplicity, we will use the following dimensionless variables 

[19]: 

(20 ) 
( ) ( ) ( ) ( )2

0 0 1 2 0 0 1 2

0 0 0

x , w ,h , c x, w,h, , t , , , c t, , , , ,
2 T

 
         =     =      =  =

 +   

where 

2 0 0
0

2
c

 + 
=

 .  

Thus, we get 

(21 ) 

( ) ( ) ( )4 2 2

1 1 2 24 2 2

w x, t w x, t x, t
1 1

t x t t x

       
+ +  = − +   

         
and 

 

 

 

 

x 

y 
 

 



Journal of Umm Al-Qura University for Applied Science 6 (2020) 6-13               Eman A. N. Al-Lehaibi 

8 

(22 ) 
( )

( )22 2

3 o 4 22 2 2

w x, t
x, t 1

x t t t x

         
−  − +   = − +      

         

  

(23 ) 
( ) ( ) ( ) ( )xx 1 2x,z, t 1 e x,, z, t 1 x, t sin pz

t t

    
 = + −  +    

      

where

( ) ( )

( )

2

0 0 T 0 0 T 02

1 2 3 42 2

0 0

h 3 2 3 2 T12 24
, , p , ,

h h 24k 2

  +    +  
 =  =  =  =  =

   + 
. 

(The primes have been dropped for convenience) 

3.1.  The formulation in the Laplace transform domain 

We will apply the Laplace transform for equations [21] and [22], 

which is defined by: 

(24 ) 
( ) ( ) s t

0

f s f t e d t



−= 
  

Hence, we obtain the following system of ordinary differential 

equations: 

(25 ) 
( ) ( ) ( )

4 2
2

1 1 2 24 2

d w d
1 s s w x,s 1 s

d x d x


+ +  = − +

  

(26 ) 
( ) ( )( )

2 2
2 2

3 o 4 o 22 2

d w
s s s s 1 s

x d x

 
−  − +   = − +  + 

 
  

(27 ) ( ) ( ) ( )xx 1 21 s e 1 s sin pz = + −  +  

(28 ) 

2

2

d w
e z

dx
= −

  

Within applying the Laplace transform, we used the following 

initial conditions: 

(29 ) 
( ) ( )

( ) ( )x,0 w x,0
x,0 w x,0 0

t t

 
 = = = =

   

We can re-write the above system to be in the forms: 

(30 )  ( )4 2

5 6D w D+  = −   

and 

(31 )  ( )2 2

7 8D D w−  = −  

where

r
r

r

d
D

d x
=

, ( )

( )

( )

2
2 21

5 6

1 1

1 ss
,

1 s 1 s

 +
 =  =

+ + , 

( ) ( )( )2 2

7 3 o 8 4 o 2s s , s s 1 s =  + +   = +  +
. 

Eliminating w  between the equations of the above system, then, 

we get 

(32 ) 
6 4 2D L D M D N 0 − + − =   

Similarly, eliminating  gives: 

(33 ) 
6 4 2D L D M D N w 0 − + − =   

where 7 6 8 5 5 7L , M , N=  +  =  =   . 

The solutions of the equations [32] and [33] take the forms: 

(34 ) 
( ) ( )( )

3
2

8 i i i

i 1

x,s c k sinh k x
=

 = − −
  

and 

(35 ) 
( ) ( ) ( )( )

3
2

i i 7 i

i 1

w x,s c k sinh k x
=

= − −  

Where the parameters 1 2 3k , k , k    are the roots of the 

following characteristic equation: 

(36 ) 
6 4 2k Lk Mk N 0− + − =  

To calculate the constants ( )i ic c s , i 1,2,3= = , we must 

apply any set of boundary conditions, so we consider that the beam is 

thermally loaded and simply supported as following: 

(37 ) 
( )

( )
( ) ( )

2

02

x 0

w x, t
w 0, t 0, 0, t g t

x
=


= =  = 

  

and 

(38 ) 

( )
( )

( )
2

2

x

w x, t
w , t , t 0

x
=


= = =


  

Where 0 is constant.  

Apply the Laplace transform, we have: 

(39 ) 
( )

( )
( ) ( )

2

02

w 0,s
w 0,s 0, 0,s g s

x


= =  = 

  

and 

(40 ) 
( )

( )
( )

2

2

w ,s
w ,s ,s 0

x


= = =

  

Then, we obtain the following system of linear equations: 

(41 ) 
( )

( )3
02

i i i

i 1 8

g s
c k sinh k

=


= −




  

(42 ) 
( ) ( )

3
2

i i 7 i

i 1

c k sinh k 0
=

− =
  

and 

(43 ) 
( ) ( )

3
2 2

i i 7 i i

i 1

c k k sinh k 0
=

− =
  

After solving the above system, then, we get the solutions in the 

Laplace transform domain as follows: 

(44 ) 

( )
( ) ( )

( )( )
( )( ) ( )

( )( )

( )( )
( )( ) ( )

( )( )

( )( )
( )( ) ( )

( )( )

2 2 2

7 2 7 3 1

12 2 2 2

1 2 1 3 1

2 2 2

7 1 7 3 20

22 2 2 2
7 2 1 2 3 2

2 2 2

7 1 7 2 3

32 2 2 2

3 1 3 2 3

k k k
sinh k x

k k k k sinh k

k k kg s sin pz
x,s sinh k x

k k k k sinh k

k k k
sinh k x

k k k k sinh k

  −  −
 − +

− − 
 
  −  −

 = − + 
 − − 

 
 −  − 

− 
− −  

  

(45 ) 

( )
( )( )( )( )

( )( ) ( )
( )( )

( )( ) ( )
( )( )

( )( ) ( )
( )( )

12 2 2 2

1 2 1 3 1

2 2 2

0 7 1 7 2 7 3

22 2 2 2
7 8 2 1 2 3 2

32 2 2 2

3 1 3 2 3

1
sinh k x

k k k k sinh k

g s k k k 1
w x,s sinh k x

k k k k sinh k

1
sinh k x

k k k k sinh k

 
 − +

− − 
 

  −  −  −  = − − +
   − −
 
 

− 
− −  

  

and 

(46 ) 

( )
( )( )( )( )

( )( ) ( )
( )( )

( )( ) ( )
( )( )

( )( ) ( )
( )( )

2

1
12 2 2 2

1 2 1 3 1

2 2 2 2
0 7 1 7 2 7 3 2

22 2 2 2
7 8 2 1 2 3 2

2

3
32 2 2 2

3 1 3 2 3

k
sinh k x

k k k k sinh k

z g s k k k k
e x,s sinh k x

k k k k sinh k

k
sinh k x

k k k k sinh k

 
 − +

− − 
 

  −  −  −  
= − +   − −

 
 
 −
 − −
 

  

3.2.  The Stress and the Strain-Energy  

The stress-strain energy through the beam is calculated by [39]: 

(47 ) 
( ) ( ) ( )

3

ij ij xx

i, j 1

1 1
x,z, t e x,z, t e x,z, t

2 2=

 =  = 
  

Hence, we have: 

(48 ) 
( ) ( )( ) ( )( )1 1

xx

1
x,z, t L x,z,s L e x,z,s

2

− −    =      

where   1L− • gives the inversion of Laplace transform. 
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4. Numerical Inversion of the Laplace Transform 

Before we go on the numerical solutions of the problem, we must 

determine the function of the thermal loading ( )g t . We consider 

that the thermal loading will take two different types as follows: 

 

1- Ramp-type heating 

(49 ) 

( ) 0

0

0

0 t 0

t
g t 0 t t

t

1 t t

 
 
 

=   
 
    

Where 0t  is called the ramping time parameter 

Applying Laplace transform defined in  [24], then, we have 

(50 ) 
( )

0st

2

0

1 e
g s

s t

−
−

=
  

2- Harmonic-type heating 

(51) ( ) ( )g t sin t=   

where   is called the angular thermal moment parameter  

By using Laplace transform defined in  [24], we get 

(51 ) 
( ) 2 2

g s
s


=

+  

The approximation method of Riemann-sum has been used to obtain 

numerical results. Within this method, any function in the Laplace 

domain can be inverted to the time-domain as:  

(52 ) 
( ) ( )

t N
n

n 1

e 1 i n
f (t) f Re 1 f

t 2 t



=

   
=  + − +  

  


  

where Re is the real part and i is an imaginary number unit. For 

faster convergence, numerous numerical experiments have shown that 

the value of  satisfies the relation t 4.7   Tzou [2]. 

5. Numerical Results and Discussion 

Now, we will consider a numerical example for which 

computational results are given. For this purpose, The gold (Au) has 

been taken as the thermoelastic material for which we take the 

following values of the different physical constants[39]: 

( )k 318 W / mK=
, 

( )
6 1

T 14.2 10 K
− − =

, 

31930 kg / m =
, 0T 293K=

,  

( )C 130 J / kg K = ,

9 2

0 458.33 10 N / m = 
, 

9 2

0 62.5 10 N / m = 
, 

13

0 4.32 10 s− = 
, 

13

1 1 6.89 10 s− =  = 
. 

The aspect ratios of the beam are fixed as / h 5=  and 

b h / 2= . For the nanoscale beam, we will take the range of the 

beam length ( ) 121 100 10 m−−  —the original time t and the 

relaxation time 0  of order 
1210−

sec and 
1410−

sec, respectively. 

The figures were prepared by using the non-dimensional variables 

for beam length 1.0= , 0 1.0 =   z h / 4= and t 1.0= . 

Figures 2-6 represent the temperature increment, the lateral 

vibration, the deformation, the stress, and the stress-strain energy 

distributions, respectively, for the thermoelastic case and the 

viscothermoelastic case. It has been noted that the temperature 

increment almost is the same for the two cases, while the effects of the 

viscothermoelastic parameters are significant on the lateral vibration, 

the deformation, the stress, and the stress-strain energy distributions. 

The peak points of the lateral vibration, deformation, stress, and stress-

strain energy distributions are raised in the case of 

viscothermoelasticity. 

Figures 7-11 represent the temperature increment, the lateral 

vibration, the deformation, the stress, and the stress-strain energy 

distributions, respectively, with variance values of ramping time 

parameter ( )0t 0.5,1.0,1.5=  and the viscothermoelastic case.  It 

has been noted that the temperature increment in the two cases 

0 0t 0.5 and t 1.0= =  are almost the same, while it is different 

in the case 0t 1.5= . The values of the temperature increment, the 

lateral vibration, the deformation, the stress, and the stress-strain 

energy decrease when the value of the ramping time parameter 

increases. The values of the beak points of the lateral vibration, the 

deformation, the stress, and the stress-strain energy increase when the 

value of the ramping time parameter decreases. 

Figures 12-16 represent the temperature increment, the lateral 

vibration, the deformation, the stress, and the stress-strain energy 

distributions, respectively, for variance values of the angular thermal 

moment parameter ( )/ 6, / 3, / 2=     to stand on the effect 

of this parameter on all the studied functions.  It has been noted that 

the effect of the angular thermal moment parameter is significant in all 

the studied functions. When the value of the angular thermal moment 

parameter increases, the values of the temperature increment, the 

lateral vibration, the deformation, the stress, and the stress-strain 

energy distributions increase. 

6. Conclusion 

In this work, a simply supported viscothermoelastic nanobeam has 

been thermally loaded by ram-type and harmonic-type heating. The 

viscothermoelastic parameters, ramping time parameter, and angular 

thermal moment parameter have significant effects on the temperature 

increment, the lateral vibration, the deformation, the stress, and the 

stress-strain energy distributions. 

 

Figure 2: The temperature increment distribution for different models 

 

 

Figure 3: The lateral vibration distribution for different models 
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Figure 4: The deformation distribution for different models 

 

 

Figure 5: The stress distribution for different models 

 

 

Figure 6: The strain-energy distribution for different models 

 

Figure 7: The temperature increments distribution with variance values of 

ramping time parameter  

 

 

Figure 8: The lateral deflection distribution with variance values of ramping 

time parameter 

 

 

Figure 9: The deformation distribution with variance values of ramping time 

parameter 
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Figure 10: The stress distribution with variance values of ramping time 

parameter 

 

 

Figure 11: The stress-strain energy distribution with variance values of 

ramping time parameter 

 

 

Figure 12: The temperature increments distribution for variance values of 

angular thermal moment parameter  

 

Figure 13: The lateral deflection distribution for variance values of angular 

thermal moment parameter 

 

 

Figure 14: The deformation distribution for variance values of angular thermal 

moment parameter 

 

 

Figure 15: The stress distribution for variance values of angular thermal 

moment parameter  
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Figure 16: The stress-strain energy distribution for variance values of angular 

thermal moment parameter 
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